a2 United States Patent

US009235508B2

(10) Patent No.: US 9,235,508 B2

Cui et al. (45) Date of Patent: Jan. 12, 2016
(54) BUFFER MANAGEMENT STRATEGIES FOR (56) References Cited
FLASH-BASED STORAGE SYSTEMS
U.S. PATENT DOCUMENTS
(71) IAppllca‘Ilt Peking UniverSity5 Beljlng (CN) 5’586’270 A * 12/1996 Rotler """"""""" G06F 13/4068
710/13
(72) Inventors: Bin Cui, Beijing (CN); Yanfei Lv, 7,761,655 B2 7/2010 Mizushima et al.
Beijing (CN) 2004/0015731 Al* 12004 Chu ..o GOG6F 1/3225
713/300
. R 2005/0166086 Al* 7/2005 Watanabe GOGF 11/1666
(73) Assignee: PEKING UNIVERSITY, Beijing (CN) 714/6.2
)) o) 2006/0181953 Al 8/2006 Rotenberg et al.
(*) Notice: Subject to any disclaimer, the term of this 2013/0117497 Al 5/2013 Cuiet al.
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by O days. .
Heeseung Jo et al., “FAB: Flash-Aware Buffer Management Policy
(21) Appl. No.: 14/803,074 for Portable Media Players,” IEEE Transactions on Consumer Elec-
T i tronics, Jul. 2006, pp. 485-493, vol. 52, No. 2.
(22) Filed: Jul. 19, 2015 (Continued)
(65) Prior Publication Data Primary Examiner — Jae Yu .
(74) Attorney, Agent, or Firm — Ren-Sheng International
US 2015/0324296 Al Nov. 12,2015
oV 25 (57) ABSTRACT
Techniques are generally described related to a flash-based
Related U.S. Application Data buffer management strategy. One example method to manage
a buffer for a computer system may include maintaining a
(62) Division of application No. 13/290,146, filed on Nov. page-action list for monitoring a plurality of operations being
7,2011, now Pat. No. 9,122,631. executed on the computer system and utilizing a plurality of
buffer pages of the buffer. An example page-action list may
(51) Imt.CL contain a hot-access queue for recently accessed buffer pages
GOG6F 12/14 (2006.01) and a cold-access queue for less accessed buffer pages. The
GOG6F 12/02 (2006.01) example method may also include, upon a determination that
GOG6F 12/12 (2006.01) the buffer is full, identifying a victim buffer page from the
G11C 16/10 (2006.01) plurality of buffer pages for eviction and evicting the victim
(52) US.CL buffer page from the buffer. The victim buffer page may be
CPC ... GO6F 12/0246 (2013.01); GO6F 12/121 selected from the cold-access queue and based on a page
(2013.01); G1IC 16}102 (2013.01) weight, which is calculated based on a page state of the
(58) Field of Classification Se ar’ ch specific buffer page and a page hotness prediction for the

specific buffer page might be accessed by an incoming opera-

CPC .. GO6F 12/0246; GOGF 12/121; G11C 16/102 tion

USPC i 711/103

See application file for complete search history. 20 Claims, 6 Drawing Sheets

(301) —1

Moniter 2 pluralty of aperations

ing 2 plurality of buffer |
|

page
(210)

}

Mainiain a page-action list by recording buffer actions and |
references to the pluralty of buffer pages for the piuralty of |
operations |

(320)

E

*" Evaluste whether the buffer s full 7.
(@a0)

- l Yes

For a buffer page selested from the plurality of buffer pages,
determine & page state for the buffer page based on the
aperation list
(340}

|

Detecmine a page hotness predicion for the buffer page based |
on the operatron list !
(350)

Calcutate a page weight for tho buffer page based on the page |
state and the page hotnoss prediction |
(366)

Identify a spacific buifer page from the phurality of buffer pages 3
for having a low page weight |
(370)

|

Evictthe buffer page
(280)

US 9,235,508 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Hyojun Kim et al., “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” in M. Baker and E.
Riedel, 2008, pp. 239-252, FAST, USENIX.
Seon-Yeong Park et al., “CFLRU: A Replacement Algorithm for
Flash Memory,” in CASES, 2006, pp. 234-241.
Hoyoung Jung et al., “LRU-WSR: Intergration of LRU and Writes
Sequence Reordering for Flash Memory,” IEEE Transactions on
Consumer Electronics, Aug. 2008, pp. 1215-1223, vol. 54, No. 3.
Hoyoung Jung et al., “LIRS-WSR: Integration of LIRS and Writes
Sequence Reordering for Flash Memory,” in ICCSA, 2007, pp. 224-
237, LNCS 4705, Part 1.

Zhi Li et al., “CCF-LRU: A New Buffer Replacement Algorithm for
Flash Memory,” IEEE Transactions on Consumer Electronics, 2009,
pp. 1351-1359, vol. 55, No. 3.

Yi Ou et al., “CFDC—A Flash-aware Replacement Policy for Data-
base Buffer Management,” in DaMoN, 2009, pp. 15-20.

Yi Ouet al., “Clean First or Dirty First? A Cost-Aware Self-Adaptive
Buffer Replacement Policy,” in IDEAS, 2010, pp. 7-14.

Sai Tung On et al., “FD-Buffer: A Buffer Manager for Databases on
Flash Disks,” in ACM, Oct. 2010, CIKM’10, Toronto, Ontario,
Canada.

* cited by examiner

U.S. Patent Jan. 12, 2016 Sheet 1 of 6 US 9,235,508 B2

’ Computer System I
(110)
Flash-based ey
Storage System (125)
{120)
Data Page
_~- 7 (121)
Buffer Page Buffer Op(il;aic;on
{131} >~ _ (130) /
/
i
/
Frame
E}Eﬁgﬁi - 141
wea- (142
Buffer
Management

Module

(150)
Head Tail
Page
X
Write|
i ’ Operations
Frame List s .
(140) Page-Action ~ Page-Action (170)
(161) List

{160)

U.S. Patent Jan. 12, 2016 Sheet 2 of 6 US 9,235,508 B2

Read Buffer Action Write Buffer Action

: : v,
Page-Action List < :
Head g 210) 511) Tail
Page-Action List h
(220) Tail

Head

Hot-Access Queue
{230)

Head Cold-Access Queue Tail
(240)
A B . 0
g% R; f% fH *wi% g; e K ¥ O
WOH | WD o whr L
,) SN AR A
Frame List Pre s !
(250) // AN // ,'/
7 /\\ J
Vs e ~
l
i M G G
Eviction Candidate
Page Index
(260)

Fig. 2

U.S. Patent Jan. 12, 2016 Sheet 3 of 6 US 9,235,508 B2

(301)

Monitor a plurality of operations utilizing a plurality of buffer
pages
{310)

v

Maintain a page-action list by recording buffer actions and
references to the plurality of buffer pages for the plurality of
operations
{320)

A

""" Evaluate whether the buffer is full
(330)

‘l “Yes

For a buffer page selected from the plurality of buffer pages,
determine a page state for the buffer page based on the
operation list
{340)

A 4

Determine a page hotness prediction for the buffer page based
on the operation list
{(350)

v

Calculate a page weight for the buffer page based on the page
state and the page hotness prediction
{360)

h 4

ldentify a specific buffer page from the plurality of buffer pages
for having a low page weight
{370)

v

Evict the buffer page
{380)

Fig. 3

U.S. Patent Jan. 12, 2016 Sheet 4 of 6 US 9,235,508 B2

{(401)

A 4

Maintain a page-action list for monitoring a plurality of operations
utilizing a plurality of buffer pages, wherein the page-action list
contains a hot-access queue and a cold-access gueue
(410}

¥

For an operation, selected from the plurality of operations,
that is accessing a first buffer page, add a first page-action
recording the operation’s buffer action and referencing
the first buffer page 1o the hot-access queue
(420)

¥

Move a second page-action from the hot-access queue to the cold-
access queue, and set a first read weight state, associated with
a second buffer page referenced by the second page-action,
to a low value
(430)

¥

Remove a third page-action from the cold-access queue, and set a
first write weight state, associated with a third buffer page referenced
by the third page-action, to a low value
(440}

¥

Write o - e Read
Buffer /\/ Evaluate the op?‘;asiéc)m s buffer action /\ Buffer

Actlion T I Action

i If the first buffer page is previously

| referenced in the hot-access queue, set
| a second read weight state, associated
with the first buffer page, to a high value
f (453)

Set a second write weight state,
associated with the first buffer page, to a
high value
(451)

Identify a victim buffer page from the piurality of buffer pages for
eviction, wherein the victim buffer page has a low read weight state
and a low write weight state
(480)

¥
Evict the victim buffer page
{(470)

Fig. 4

U.S. Patent Jan. 12, 2016 Sheet 5 of 6 US 9,235,508 B2

{500} A computer pragram product

{504) at least one of onse or more instructions for

: monitoring. by a buffer management module, a plurality of

! operations being executed on the computer system and ulilizing & plurality
i of buffer pages of the buffer;

: upon a8 determination that the buffer is full, identifying a specific

! buffer page from the plurality of buffer pages for eviction, wherein the

i specific buffer page is selected based on 8 page state of the specific buffer
! page and a page hoiness prediction for the specific buffer page: and

avicting the specific buffer page from the buffer

| (506) A computer | (508) A recordable . (510)A
. readable medium i medium i communications
: : medium

US 9,235,508 B2

Sheet 6 of 6

Jan. 12, 2016

U.S. Patent

798 G118 BOVAUBING JOVHOLS
“““““ = -
g H - \f < e
iy 7 - N 578 43TIMINGD 59 F0VHOLE 758 39v5015
(gannan b (Shung nHV NATIONLNOD ¥l 3ovadaiNieng FHVACGHINON FIEACKEY
SNLAGHOT Pe—T¥] NOWYD e
HIHLO O SO 7y
_ m G5 SA0INAG FONHOLS
N A Yttt -
BT 309 WAL NOUSHINNMNGS ot . / |
{ 65 SN9 ANGAEN _\ |
AN y3ioniNoD f — 8 2 i8N
S ReyigmVery STY NITION NG HOLOY- 3074 !
iy = t NP , |
. J o FERR z w ;
{ B0 ps] @ it | F29 V190 W d90Nd !
¥ L Y = H ,
iz T B !
HETIONLNOD 4 i BI8 ST |
AT AHILN m m 5 ~
TS G ” ”
g i 5 W | mnoon |
TIB SIOVAELN THNBHA R3S y i 801 idd 1 , ANFNADYNYI
s m 00 YOS , H3F4Na I
““““““ : — |
—] 55 = ” 773 NOLLYO Tddy |
INISSEO0H f RASACES B B
iy | 2131y} vanat) i % |
¢ N Q.m “ dgaeshan , H3LSAS ONLYHILO |
()} 4204 H | WO |
55 LIND T8 MOSEI00U e |
ENISS300Yd | 70 AXORNEV HILSAS _
SHHEYED i
} I0% NOLYSNOLINGO Disva !
llllllllll e s e b s s e S see wd
%8 S3MWAG Lelno ~ 07 301420 ONLLAGNOD

US 9,235,508 B2

1
BUFFER MANAGEMENT STRATEGIES FOR
FLASH-BASED STORAGE SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a Division under 35 U.S.C. §121 of U.S.
patent application Ser. No. 13/290,146, filed Nov. 7, 2011,
now U.S. Pat. No. 9,122,631. The aforementioned U.S. patent
application, including any appendices or attachments thereof,
is hereby incorporated by reference in its entirety.

BACKGROUND

Buffer management is a core component of a computer
system and its operating system. A buffer management
scheme may adopt a specific buffer replacement policy to
improve the performance of the computer system or an appli-
cation (e.g., a file system or a database system). For a com-
puter using conventional disk-based storage system, many
buffer replacement policies mainly aim at reducing the rate of
buffer misses which may cause excessive accesses to the
disks. To minimize the miss rate, the conventional buffer
replacement policies may place equal emphasis on both the
read and write operations, and may not distinguish the
impacts to the buffer memory from these read and writes
operations.

Comparing to the conventional disk-based storage sys-
tems, flash disks may have a read-write asymmetry, which
means a write operation on a flash disk may be an order of
magnitude slower than a read operation on the flash disk. The
conventional buffer replacement policies may give higher
priority to dirty pages, and are mostly based on the current
page state of the buffer pages. However, these conventional
buffer replacement policies that are designed for disk-based
storage systems may no longer be optimized for flash-based
storage systems.

SUMMARY

In accordance with some embodiments of the present dis-
closure, a method to manage a bufter for a computer system is
disclosed. The method includes maintaining a page-action list
for monitoring a plurality of operations being executed on the
computer system and utilizing a plurality of buffer pages of
the buffer. The page-action list may contain a hot-access
queue for recently accessed buffer pages and a cold-access
queue for less accessed buffer pages. The method further
includes, upon a determination that the buffer is full, identi-
fying a victim buffer page from the plurality of buffer pages
for eviction, wherein the victim buffer page is selected from
the cold-access queue and based on a page weight, which is
calculated based on a page state of the specific buffer page and
apage hotness prediction for the specific buffer page might be
accessed by an incoming operation. The method also includes
evicting the victim buffer page from the buffer.

In accordance with some embodiments of the present dis-
closure, a system to manage a buffer for a computer system is
disclosed. The system includes a page-action list and a buffer
management module. The page-action list may contain a
hot-access queue for recently accessed buffer pages and a
cold-access queue for less accessed buffer pages. The buffer
management module may be coupled with the page-action
list. In addition, the buffer management module may be con-
figured to monitor a plurality of operations being executed on
the computer system and utilizing a plurality of buffer pages
of the buffer, upon a determination that the buffer is full,

10

15

20

25

30

35

40

45

50

55

60

65

2

identify a victim buffer page from the plurality of buffer pages
for eviction, wherein the victim buffer page is selected from
the cold-access queue and based on a page weight, which is
calculated based on a page state of the specific buffer page and
apage hotness prediction for the specific buffer page might be
accessed by an incoming operation, and evict the victim
buffer page from the buffer.

In accordance with some embodiments of the present dis-
closure, a machine-readable medium having a set of instruc-
tions which, when executed by a processor, cause the proces-
sor to perform a method to manage a buffer for a computer
system is disclosed. The method may include maintaining a
page-action list for monitoring a plurality of operations being
executed on the computer system and utilizing a plurality of
buffer pages of the buffer. The page-action list may contain a
hot-access queue for recently accessed buffer pages and a
cold-access queue for less accessed buffer pages. The method
may also include upon a determination that the bufter is full,
identifying a victim buffer page from the plurality of buffer
pages for eviction and evicting the victim buffer page from
the buffer. The victim buffer page may be selected from the
cold-access queue and based on a page weight, which is
calculated based on a page state of the specific buffer page and
apage hotness prediction for the specific buffer page might be
accessed by an incoming operation.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of an operational environ-
ment, in which illustrative embodiments of a buffer manage-
ment module for a computer system are presented;

FIG. 2 shows illustrative embodiments of various buffer
management strategies for flash-based storage system;

FIG. 3 shows a flow diagram of an illustrative embodiment
of'a process for implementing a flash-based buffer manage-
ment strategy,

FIG. 4 shows a flow diagram of an illustrative embodiment
of'a process for implementing an enhanced flash-based buffer
management strategy,

FIG. 5 shows an illustrative embodiment of an example
computer program product; and

FIG. 6 shows a block diagram of an illustrative embodi-
ment of an example computing system.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented here. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, substituted, com-
bined, and designed in a wide variety of different configura-
tions, all of which are explicitly contemplated herein.

This disclosure is drawn, inter alia, to methods, appara-
tuses, computer programs, and systems related to flash-based

US 9,235,508 B2

3

operation-aware buffer replacement strategies. When trying
to evict a buffer page from a buffer associated with a flash-
based storage system, one buffer replacement strategy is to
consider all buffer pages’ page states and the future opera-
tions that may rely on the buffer pages. The buftfer replace-
ment strategy may consider the asymmetry of read and write
speeds on the flash-based storage system, as well as whether
the buffer pages are clean or dirty. To further enhance the
performance of the buffer, a second buffer replacement strat-
egy may use binary-represented weights to approximate the
combination of operation type and page state to reduce the
time complexity of the buffer replacement strategy.

FIG. 1 shows a block diagram of an operational environ-
ment, in which illustrative embodiments of a buffer manage-
ment module for a computer system are presented. In FIG. 1,
a computer system 110 may contain a flash-based storage
system 120 and a central processing unit (CPU) 125. The
flash-based storage system 120 may be a non-volatile storage
system used by the computer system 110 as system memory
or as physical storage. The flash-based storage system 120
may provide byte-level or word-level access for read opera-
tions, while the write or erase operations may be performed at
block-level or page-level. Thus, the flash-based storage sys-
tem 120 may have a read-write asymmetry, since rewriting in
blocks or pages often takes longer than reading in bytes or
words. The CPU 125 may be processor(s) that control the
overall operation of the computer system 110.

In some embodiments, the computer system 110 may have
abuffer management module 150 to enhance the performance
of the flash-based storage system 120. The buffer manage-
ment module 150 may control a buffer (cache) 130, which
may be a high-performance physical memory storage used to
temporarily hold data read from, or to be written to, the
flash-based storage system 120. The buffer 130 may contain
aset of storage pages, each of which may have a size that is the
same as, or different from, the size of a data page 121 stored
or to be stored in the flash-based storage system 120. For
convenience purpose, a data page that is cached in the buffer
130 may be referred to as a “buffer page”, or a “buffered
page.”

In some embodiments, the buffer management module 150
may provide read buffering services for the flash-based stor-
age system 120. Upon receiving a read request for a data page
X 121 stored in the flash-based storage system 120, the buffer
management module 150 may first check to see whether the
data page 121 is available in the buffer 130, e.g., finding a
corresponding buffer page in the buffer 130. If such a buffer
page is not found in the buffer 130, a situation commonly
referred to as a buffer miss or a cache miss, the buffer man-
agement module 150 may load the data page 121 from the
flash-based storage system 120. The data page 121 may then
be served as a response to the read request after it is saved in
the buffer 130 as a buffer page 131. When the same data page
is requested again, as long as the corresponding data page is
not updated in the flash-based storage system 120, the buff-
ered copy of the data page (e.g., the buffer page 131) may be
immediately located (buffer hit), and retrieved for services.
Since in a buffer hit situation, the data page 121 is not required
to be retrieved from the flash-based storage system 120, the
buffer management module 150 significantly increases the
performance and availability of the flash-based storage sys-
tem 120 in providing data services.

In some embodiments, the buffer management module 150
may provide write buffering service. In a write-through buff-
ering/caching scheme, upon receiving a write request to store
a page of data to the flash-based storage system 120, the
buffer management module 150 may store the page as the

10

15

20

25

30

35

40

45

50

55

60

65

4

buffer page 131 and synchronously store the same page of
data to the flash-based storage system 120. Synchronous
operation ensures that the data is cached in the buffer man-
agement module 150 and committed to the flash-based stor-
age system 120 in a single transaction. When subsequent read
requests are received by the buffer management module 150
for the same page of data, the buffer page 131 can be retrieved
directly from the buffer 130 without having to accessing the
flash-based storage system 120.

In some embodiments, the buffer management module 150
may implement a write-back buffering/caching scheme. In a
write-back buffering/caching scheme, the page of data to be
stored in the flash-based storage system 120 may first be
saved as the buffer page 131 before being persistently stored
(committed) to the flash-based storage system 120. Periodi-
cally, the uncommitted data, which is data that is buffered but
yet stored to the flash-based storage system 120, are asyn-
chronously transmitted in batches to the flash-based storage
system 120 for persistent storage. When a buffer page con-
tains the same data as the associated data page in the flash-
based storage system 120, the buffer page may be referred to
as a “clean” page. If the buffer page is subsequently updated,
but before the updated data is synchronized to the flash-based
storage system 120, the buffer page may be referred to as a
“dirty” page.

In some embodiments, the buffered data stored in the
buffer 130 can be swapped out of (or evicted from) the buffer
130 if it is not frequently requested. Evicting a seldom
accessed data removes such data from the buffer 130 to create
space for the buffering of newly requested data. For example,
if there is no space left in the bufter 130, and newly requested
data is not in the buffer 130, then the less requested data may
be evicted from, or swapped out of, the buffer 130 to create
space for the newly requested data. The buffer pages evicted
or to be evicted may be referred to as the “victim” pages.

In some embodiments, the buffer management module 150
may be configured to buffer data pages, data blocks, files,
directories, and/or other logical or physical storage entities
stored in the flash-based storage system 120. During buffer-
ing of'a data page 121, the data associated with the data page
121 may beretrieved from the flash-based storage system 120
and stored as the buffer page 131 in the buffer 130. In addi-
tion, the ID and/or the address of the data page 121 in the
flash-based storage system 120 may also be recorded in the
buffer page 131 for identification and association purposes.
For example, a buffer page may have an ID “X” which may be
associated with an ID and/or an address that can be used to
identify and retrieve the page of data from the flash-based
storage system 120.

In some embodiments, the buffer management module 150
may maintain a frame list 140 to track the status of the buffer
pages in the buffer 130. The frame list 140 may contain a set
of frames 141, each of which is associated with and is used to
track a corresponding buffer page 131. For example, the
frame 141 may indicate whether the buffer page 131 is used or
empty. The frame 141 may also contain status information,
such as whether the associated buffer page is clean or dirty, as
well as other information that allows the buffer management
module 150 to determine buffer replacement policies. There-
fore, the frame 141 may be deemed, or may contain, a refer-
ence to a specific buffer page 131.

In some embodiments, the various tasks executing or to be
executed on the computer system 110 may be defined as a set
of'operations 170. Each operation 171 in the set of operations
170 may utilize the flash-based storage system 120 for data
storing and/or retrieving. Thus, the buffer management mod-
ule 150 may enhance the performance of the computer system

US 9,235,508 B2

5

110 by providing a fast buffer replacement strategy during
buffering of the data pages. Specifically, the buffer manage-
ment module 150 may maintain a page-action list 160 to track
the execution of the set of operations 170 by the CPU 125. The
buffer management module 150 may be a hardware module
orasoftware component (e.g., as a part of an operating system
supporting the computer system 110) that is configured with
embodiments of the buffer management strategies as
described below.

During processing, an operation 171 may request to access
one or more data pages stored in the flash-based storage
system 120, and the buffer management module 150 may
record the buffer action (e.g., read or write) the operation 171
intended to perform, the state of the buffer pages (e.g., clean
or dirty) after the operation is processed, and/or the IDs of the
specific data pages that have been requested by the operation
171, in the page-action list 160. In FIG. 1’s example, for the
operation 171 being executed by the CPU 125 and accessing
a data page “X”, the buffer management module 150 may
load the data page X as the buffer page 131, and create a
page-action 161 to store the operation’s buffer action
(“Write”), the current page state of the buffer page (“Dirty™),
as well as the ID of the requested data page (“X”).

In some embodiments, after being created, the page-action
161 may then be stored in the page-action list 160. In other
words, multiple page-actions in the page-action list 160 may
be referring to a single buffer page 131, but each of these
page-actions may represent a distinctive buffer action (buffer-
page-read or buffer-page-write) occurred when a specific
operation 171 is executed on the computer system 110. All the
page-actions in the page-action list 160 may be hashed for
quick access, and used for determining how and when to evict
any buffer pages from the buffer 130. In other words, the
page-action list 160 records detail information about how the
operations 170 utilized the buffer 130. By reviewing the page-
action list 160, the buffer management module 150 may be
able to analyze the buffer actions, types and orders, the buffer
pages that have been utilized, as well as how the buffer pages
are requested.

In some embodiments, the buffer management module 150
may also update the frame list 140 based on a specific opera-
tion 171. For example, when a specific buffer page is
accessed/used, the buffer management module 150 may
record, in a corresponding frame 141, the state of the buffer
page that is stored in the buffer page (clean or dirty), as well
as the ID (e.g., “X”) of the buffered data page. Additional
information that may be stored in the frame 141 is further
described below.

FIG. 2 shows illustrative embodiments of various buffer
management strategies for flash-based storage system. In
FIG. 2, a page-action list 210, which is similar to the page-
action list 160 of FIG. 1, may be configured to record, chro-
nologically from left to right, a set of operations that have
been processed, or scheduled to be processed, by a computer
system. A page-action for a “read buffer action” by an opera-
tion may be indicated by a “circle”, and a page-action for a
“write buffer action” by an operation may be shown by a
“square”. The character within each page-action may refer to
the ID of a specific data page that is buffered in a buffer. In
other words, the page-action list 210 may contain a set of
page-actions to store various operations’ corresponding data
request actions, buffer pages’ states, and/or IDs of the data
pages.

In a conventional disk-based storage system, a data read
and a data write operation may have similar costs in terms of
processing time and system resource. Thus, the primary goal
of managing a buffer for the disk-based systems is to maxi-

35

40

45

50

55

60

6

mize the hit rate of the buffer, while ignoring the types of
action performed by the operations. In comparison, the read/
write characteristics of a flash-based storage system are dif-
ferent from those of the disk-based storage system. In some
embodiments, a buffer management strategy for a flash-based
storage system may consider the cost difference between the
read and write operations, and try to keep more dirty pages in
the buffer to reduce the expensive cost of synchronizing to the
flash-based storage system. However, keeping inactive dirty
pages in buffer may not always be beneficial, as the inactive
dirty pages take up the precious and limited buffer spaces.

In some embodiments, the effect of future operations that
are scheduled to be executed in the computer system may
hold the key to enhance the performance of the buffer man-
agement strategies. In other words, the I/O time reduced by
the buffering of a specific page may be related to both the
current state of the buffer page and the future operations on
the data page that is stored in the buffer page.

In the following Table 1, Cr refers to the time needed for
reading a data page from the flash-based storage system into
the buffer. And Cw stands for the time needed for writing a
data page from the buffer to the flash-based storage system.
There are four cases according to the combinations of opera-
tions and page states, as the following:

TABLE 1
Future Operation’s ~ When a buffer page When a buffer page
Buffer Action is clean is dirty
Read Cr Cr
Write Cr Cr+Cw

Table 1 shows that when the current state of the buffer page
is clean and the next operation on the data page has a read
buffer action, the buffer page can be used directly without
accessing the flash-based storage system. Thus, the I/O time
Cr forloading the data page into the buffer is saved. Similarly,
when the current state of the buffer page is dirty and the next
operation on the data page has a read buffer action, since the
dirty buffer page in the buffer reflects the most up-to-date
version of the data, the read buffer action can directly read the
dirty buffer page, and the time for a buffer read Cr may also be
saved. The I/O time of dirty page write back is not considered
in this case because the write back will eventually happen
later.

Table 1 further shows that when the current state of the
buffer page is clean and the next operation on the data page
has a write buffer action, then the buffer page may turn dirty.
Still, the time benefit for using buffer in this case is also Cr,
since no data loading is necessary. Further, when the current
state of the buffer page is dirty and the next operation on the
data page has a write buffer action, the next write operation
can be merged with the previous ones since the buffer page
has not been synchronized with the flash-based storage sys-
tem, and hence a synchronization write cost Cw is saved. At
a later time, a page write to the flash memory may be per-
formed when the buffer page is evicted. Since no read is
necessary, the time benefit for using buffer in this case may be
Cr+Cw.

In some embodiments, an operation-aware buffer manage-
ment strategy may be configured to examine how a sequence
of operations utilizes the data pages to estimate/predict the
hotness of these data pages. There are various metrics (e.g.,
frequency, recency) to indicate the hotness of a data page. For
example, an inter-operation distance (IOD) metric may
reflect the frequency of a specific buffer action utilizing a

US 9,235,508 B2

7

specific data page (“action-on-page”) by counting the dis-
tance (e.g., the number of various different buffer actions
performed on other data pages) in between two consecutive
occurrences of the specific action-on-page, including the cur-
rent specific action-on-page. If a specific action-on-page does
not appear again in the succeeding operation sequence, the
10D value for the specific action-on-page may not change.
Therefore, an operation recency (OR) metric may be used to
reflect recency of the specific action-on-page by finding the
number of distinct buffer actions performed on other buffer
pages, counting the specific action-on-page. The IOD and OR
may be two complementary metrics to measure the hotness of
a data page. In other words, the IOD may show a long-term
workload pattern. And the OR may indicate the freshness of a
page access.

InFIG. 2, the page-action list 210 may illustrate a sequence
of operations that have been processed by a computer system
and recorded by a buffer management module. The page-
action list 210 stores some of the latest read and write buffer
actions performed on various buffer pages. The page IDs for
these buffer pages are stored in the page-action list 210 in the
same order as these buffer pages are accessed by the sequence
of operations, regardless of whether these buffer pages are
evicted from the buffer. The set of page-actions in the page-
action list 210 may be ordered in a least-recent-used (LRU)
fashion. Thus, when a new buffer action is performed on a
specific data page, a new page-action may be generated for
the new action-on-page, and stored in the head (MRU, most-
recent-used) of the page-action list 210. Further, one or more
existing page-actions in the page-action list 210 may be
removed when they are no longer needed.

In particular, assuming a specific page-action in the page-
action list 210 indicates a “read” operation on a data page
“X”, the number of different page-actions between the head
of the page-action list 210 and the specific page-action may
used to calculate the current value OR for the “read-on-X.”
Likely, assuming the specific page-action is for a “write”
buffer action on a data page “Y”’, when another “write” buffer
action is performed on data page Y, the current OR value for
the “write-on-Y”” may be used to determine the IOD value for
the “write-on-Y”’. Meanwhile, the OR value for the “write-
on-Y” may be changing (incrementing) when additional
buffer actions are performed on other data pages. Therefore,
for every operation performed, the IOD value for the specific
action-on-page may be immediately calculated and stored in
the frame that is associated with the specific buffer page. In
comparison, the OR value for the specific action-on-page
may be calculated whenever the OR value is needed. Further,
the frame associated with the buffer page may be used to store
the OR value for read, the OR value for write, the IOD value
for read, and the 10D value for write, all of which are asso-
ciated with the buffer page, as well as the state of the buffer
page. To accelerate page and information access, the page-
actions in the page-action list 210 may be indexed by an
in-memory hash table according to data page ID.

In FIG. 2’s exemplary page-action list 210, after a new
page-action “read-on-page A” is added to the head of page-
action list 210, the IOD value for the read-on-A may be
calculated. In this case, the IOD value for read-on-A is (4+
1)=5, as there are four distinctive action-on-pages (a write-
on-B, a read-on-C, a write-on-D, and a write-on-C) between
the two occurrences of read-on-A, plus the last read-on-A.
The OR value for read-on-C at this moment is 3, as there are
two distinct page-actions (a read-on-A and a write-on-B)
performed along with the last occurrence of read-on-B. After
the IOD value is calculated, any older read-on-A (e.g., page-
action 211) may be removed from the page-action list 210.

15

25

40

45

55

8

Therefore, there may be no duplicated page-action in the
page-actionlist 210. And the IOD and OR values for a specific
action-on-page are calculated based on the distinctive
(unique) page-actions in the page-action list 210.

In some embodiments, an operation hotness prediction
value H, which integrates IOD and OR, may be used to reflect
the hotness of a specific action-on-page. The hotness value H
may be calculated using the following formula 1:

H=a*IOD+(1-a)*OR (Formula 1)

where a is a tuning parameter to determine the importance of
two factors. In some embodiments, a may be set to be 0.5 to
give the IOD and OR an equal weight. If IOD value does not
exist for some pages, the OR value may be used as the IOD
value in the above formula. Thus, the hotness value H may
indicate the popularity of a specific operation on a data page
according to the operation statistics. In other words, the hot-
ness value H may be deemed a hotness prediction for an
operation that might use the data page. As shown in formula
1, the higher the IOD and the OR values, the higher the
calculated hotness value H. In some embodiments, since high
IOD and OR values indicate the data page is being less used,
ahigh hotness value H may indicate that a buffer page may be
a candidate for eviction. Thus, a buffer page with small H
value should be remained in the buffer as it has higher prob-
ability to be accessed subsequently.

In some embodiments, when a new operation is processed,
the buffer management module may first perform bufter allo-
cation for the new operation, and then record the necessary
information to the frame list and the page-action list. For
example, the buffer management module may store the IDs of
the data pages, the buffer page(s) the new operation accessed,
and the buffer actions the new operation performed on the
buffer page(s) to the page-action list 210. Further, the buffer
management module may update the page-action list 210 by
adding a new page-action related to the new operation, and
remove the relevant old page-actions. In some embodiments,
the buffer management module may maintain at most two
page-actions in the page-action list to record the two occur-
rences of a specific action-on-page. Since the IOD and the OR
values for any data page may be calculated using these two
page-actions, any page-actions that store information that is
older than these two page-actions may be unnecessary, and
may be removed from the page-action list without affecting
the above calculation of the hotness values. Further, after the
10D value is calculated, the older one of the two page-actions
may also be removed.

In some embodiments, a page weight, which is calculated
based on the hotness of a data page in view of the future
operations, may be utilized for determining which buffer
page(s) should be evicted from the buffer. In the following
formula 2, supposing r and w are the latest read and write
operations on a data page p, the page weight Wp may be
defined as:

Wp=Cr/Hr+Cr/Hw; when p is clean

Wp=Cr/Hr+(Cr+Cw)/Hw; when p is dirty (Formula 2)

where Hr and Hw refer to the page-read hotness prediction
value for a read-on-p, and the page-write hotness prediction
value for a write-on-p, respectively. And if there is no previ-
ous read or write buffer actions on page p, the corresponding
Wp values in the above formula should be zero. Thus, the Hr
and the Hw values may be viewed as statistical information
that, although derived from some of the past operations, can
be used as a probability prediction for the future operations.

US 9,235,508 B2

9

In the above formula, when a buffer page p is clean, the
probability for a future read buffer action may be indicated by
the hotness value Hr. And the probability for a future write
buffer action may be shown by the hotness value Hw. As
described before, a read buffer action on a clean page may
have a time save of Cr, and a write buffer action on a clean
page may have a time save of Cw. Thus, the Hr and Hw values
may be weighted according to the corresponding buffer time
saves. Similarly, when the buffer page p is dirty, the Hr and
Hw values may also be weighted by their corresponding time
saves (Cr and Cr+Cw). Thus, the weight value Wp takes the
1/0 time reduced by buffering, as well as the hotness predic-
tion of the read and write operations on the page p, into
consideration.

In some embodiments, a flash-based, operation-aware
buffer replacement algorithm (FOR) may use the above for-
mulas to calculate a corresponding weight for each of the
buffer pages in the buffer, and choose the bufter page(s) that
have low or the lowest weights for eviction. Since a low
weight value may be attributed to high hotness values Hr
and/or Hw, and high hotness values mean the page may have
not been accessed recently and/or frequently by a read opera-
tion and/or a write operation, evicting buffer pages with low
weight value could bring efficiency to the data buffering.

In some embodiments, when buffering of a new data page
is needed and there is no empty space left in the buffer, the
FOR algorithm may select one or more buffer pages from the
buffer for eviction. The FOR algorithm may first calculate the
OR and IOD values for each buffer page in the buffer, and
generate a corresponding weight value for the buffer page. In
some embodiments, the bufter page(s) that have a low weight
value may be selected as the victim(s) for eviction. After
eviction, the space previously occupied by the evicted page
may be used for buffering of the new data page. Each time an
eviction is required, the above process may be repeated, and
the weights for all the buffer pages may have to be re-calcu-
lated. Therefore, the above process has a complexity of O(n),
which may not be ideal for a database system which is sen-
sitive to the performance of the buffering strategy.

In some embodiments, an approximated FOR algorithm
(FOR+), which has an O(1) time complexity, may be adopted
for determining the victim pages for eviction. Instead of cal-
culating weights values for each bufter page, the FOR+ algo-
rithm categorizes these buffer pages into two weight states
(e.g., high and low). The buffer pages that belong to low
weight state may be chosen as the victim pages for eviction.
To accomplish this, additional factors may be considered
along with the page state and the operation hotness.

In the above examples, when a buffer page’s weight value
is high, the buffer page may be under the following four
situations: RCH (Read Clean High), WCH (Write Clean
High), RDH (Read Dirty High), and WDH (Write Dirty
High). Among these four situations, since buffering under
RCH and RDH may lead to the same I/O time reduction Cr,
the RCH and RDH may be combined to a new situation RH
(Read page High). In comparison, once a buffer page is
updated in buffer, the state of the buffer page changes to dirty.
Thus, WCH is volatile, and the WDH mark is more relevant
for adirty page. As aresult, the FOR+ algorithm may take two
of the above four situations into separate consideration: RH
and WDH. That is, for each buffer page, a RH weight state and
a WDH weight state may be maintained in a data structure for
the buffer page. When any one of these two weight states has
a “high” value, the buffer page may not be a candidate for
eviction.

To further simplify the process, rather than generating and
comparing the weight values for all the buffer pages, the

10

15

20

25

30

35

40

45

50

55

60

65

10

FOR+ algorithm may assign high or low weight state values
to each ofthe buffer pages. That is, each buffer page may have
a RH weight state and a WDH weight state. Each of the RH
weight state and the WDH weight state can have a high value
or a low value. The high or low value is assigned according to
the buftfer pages’ IOD values, as the IOD values better reflect
the access frequency. The high weight state values may be set
to low (cleared) according to the value of OR. In this case, the
low weight state values may indicate that buffer pages have
not been accessed for a long time, and can be evicted. Further,
if the Cr/IOD is relatively high in all the operations, the RH
weight state for the buffer page may be set to high.

In some embodiments, the FOR+ algorithm may separate a
page-action list 220 into two queues, a hot-access queue 230
and a cold-access queue 240. The hot-access queue 230 may
store page-actions for buffer pages that are recently read or
written. And the cold-access queue 240 may store page-ac-
tions for buffer pages that are relatively less accessed. The
hot-access queue 230 and the cold-access queue 240 may be
adjusted in a LRU manner. During operations, a page-action
in the hot-access queue 230 may be moved to the cold-access
queue 240 if the same action has not been performed on the
associated buffer page for a while. The buffer pages in the
cold-access queue 240 may be moved out of the cold-access
queue 240 and back into the hot-access queue 230 if a same
page-action has been recently performed. Victim pages for
eviction may be selected from the cold-access queue 240. If a
victim page is selected from the cold-access queue 240, and
have “low” values for its RH and WDH weight states, then the
victim page may be evicted accordingly.

Insome embodiments, a frame list 250, similar to the frame
list 140 of FIG. 1, may be used to record the status informa-
tion for each of the buffer pages in the buffer. Each frame in
the frame list 250 may track a corresponding buffer page’s
RH and WDH weight states. In FIG. 2’s illustration, for each
buffer page, the high RH or WDH weight states may be
marked, and the low RH or WDH weight state may not be
marked. For example, buffer page A may have a high RH
weight state and a high WDH weight state, buffer page C may
have a high RH weight state and a low WDH weight state,
buffer page E may have a low RH weight state and a high
WDH weight state, and the buffer page G may have a low RH
weight state and a low WDH weight state, etc.

In some embodiments, once a new operation is performed,
the FOR+ algorithm may first determine the new operation’s
action(s) and the buffer page(s) the new operation utilizes,
and search in the page-action list 220 for any existing page-
action that represents the action-on-page. If an existing page-
action is found in the hot-access queue 230 or the cold-access
queue 240, then the existing page-action may be removed
from the hot-access queue 230 or the cold-access queue 240.
Afterward, a new page-action may be created and placed at
the head of the hot-access queue 230.

In some embodiments, when the new operation has a read
buffer action, if an existing page-action is found in the hot-
access queue 230, then the frame for the buffer page may set
its RH weight state to “high.” When no existing page-action is
found in the page-action list 220, or an existing page-action is
located in the cold-access queue 240, the above setting of the
RH weight state is not performed. Thus, having a new read
buffer action on a buffer page may put a corresponding page-
action to the head of the hot-access queue 230, but not by
itself set the RH weight state to “high” value. Afterward, as
long as an existing page-action remain in the hot-access
queue 230, a second read action on the same buffer page may
cause the RH weight state to be set to the “high” value. In
comparison, if a buffer page referenced in the hot-access

US 9,235,508 B2

11

queue 230 is not accessed again for a while, it may be moved
from the hot-access queue 230 into the cold-access queue
240, and subsequently removed from the cold-access queue
240 for eviction. Further, when the new operation has a write
buffer action, then the FOR+ algorithm may perform the
above page-action operations, and set the WDH weight state
to “high” in the frame that is associated with the buffer page.
Such a configuration may allow buffer pages under the write
buffer action to be less likely to be evicted than the buffer
pages under the read buffer action.

In some embodiments, once the hot-access queue 230 is
full, any addition of new page-action to the front of the hot-
access queue 230 may result in having a page-action at the tail
of the hot-access queue 230 being moved to the head of the
cold-access queue 240. Afterward, the frame for the buffer
page that has page-action moved to the cold-access queue 240
may set its RH weight state to “low” value, without changing
its WDH weight state value. Once the cold-access queue 240
is full, then the adding of a page-action to the head of the
cold-access queue 240 may result in the selecting of a page-
action at or near the tail of the cold-access queue 240 for
eviction. The removal of one or more page-actions from the
cold-access queue 240 may also result in setting the WDH
weight states to “low” values for the frame(s) that are asso-
ciated with the page-action(s). In some embodiments, once a
cold page-action is changed to hot, a hot page-action may
need to be changed to cold, so that the number of cold page-
actions is constant in the cold-access queue 240. Afterward,
the buffer page(s) identified by the removed page-actions
may be evicted from the buffer, since the buffer page(s) have
“low” RH and WDH weight states.

In some embodiments, to quickly find all the frames in the
frame list 250 that have low RH and WDH weight states, one
or more indices may be deployed to enhancement the FOR+
algorithm’s performance. For example, once a page-action is
removed from the cold-access queue 240, a reference may be
set in the eviction candidate page index 260 to referencing the
corresponding frame in the frame list 250 that has “low” RH
and WDH weight states. During eviction, the eviction candi-
date page index 260 may be used to locate the one or more
referenced frames, resulting in the obtaining of the victim
page(s). When a new page-action is added to the page-action
list 220, the reference to the corresponding frame may be
removed from the eviction candidate page index 260. In addi-
tion, other indices may be used for quick identifying the front
and the end of the hot-access queue 230 and the cold-access
queue 240.

Thus, the above process utilizes the page-action list 220 for
quickly sorting the page-actions into hot-access and cold-
access queues, without having to calculate individual buffer
page’s hotness values. Further, the above process may give
more weight to the buffer page having write buffer action,
since the frame that is associated with the write-on-page may
have a “high” WDH value, which may be set to “low” after the
page-action travels through the hot-access queue 230 and the
cold-access queue 240, and being removed from the page-
action list 220 for not being used again. In comparison, a
buffer page having a read buffer action may have a “high” RH
weight state when an identical page-action is located in the
hot-access queue 230, and the RH weight state may be
quickly set to “low” when the page-action is moved from the
hot-access queue 230 to the cold-access queue 240. There-
fore, the buffer pages that have read-on-page but no write-on-
page may have a much higher chance of being evicted. By
evaluating the RH and WDH weight states, no complicated
calculation of the weight values is needed. The FOR+ algo-
rithm may incur a limited amount of space overhead com-

10

15

20

25

30

35

40

45

55

60

12

pared to the buftered data. Hence the FOR+ algorithm has a
O(1) time complexity on average for every buffer page
access.

FIG. 3 shows a flow diagram of an illustrative embodiment
of'a process for implementing a flash-based buffer manage-
ment strategy. The process 301 may include one or more
operations, functions, or actions as illustrated by blocks 310,
320, 330, 340, 350, 360, 370, and/or 380, which may be
performed by hardware, software and/or firmware. The vari-
ous blocks are not intended to be limiting to the described
embodiments. For example, one skilled in the art will appre-
ciate that, for this and other processes and methods disclosed
herein, the functions performed in the processes and methods
may be implemented in differing order. Furthermore, the
outlined steps and operations are only provided as examples,
and some of the steps and operations may be optional, com-
bined into fewer steps and operations, or expanded into addi-
tional steps and operations without detracting from the
essence of the disclosed embodiments. Although the blocks
are illustrated in a sequential order, these blocks may also be
performed in parallel, and/or in a different order than those
described herein. In some embodiments, machine-executable
instructions for the process 301 may be stored in memory,
executed by a processor, and/or implemented in the computer
system 110 of FIG. 1.

At block 310, a buffer management module of a computer
system may utilize a buffer during the processing of a plural-
ity of operations. The buffer may be associated with a flash-
based storage system, and may contain a plurality of buffer
pages that are buffering/caching the pages of data for the
flash-based storage system. For each of the plurality of opera-
tions, the buffer management module may monitor the buffer
page(s) accessed by the operation, as well as the type of buffer
action (read or write) that is performed by the operation on the
buffer page(s).

At block 320, the buffer management module may main-
tain a page-action list for the monitoring of the plurality of
operations. The page-action list may be used for storing one
ormore page-actions. Each page-action may record the buffer
action of a specific operation (selected from the plurality of
operations) and record/reference the buffer page(s) accessed
by the specific operation. Further, additional information,
such as whether the buffer page referenced by the page-action
is clean or dirty, as well as timestamps, etc, may be stored in
the page-action. Indices to the page-action list may be setup
for fast search and retrieval of the page-actions based on
buffer page’s page 1ID.

At block 330, the computer system may try to process a
specific operation selected from the plurality of operations.
The specific operation may request for a data page (denoted
page x) from the flash-based storage system. The buffer man-
agement module may utilize the buffer to enhancement the
performance of the data request. If the requested page x is
found in the buffer, the buffer management module may serve
the founded buffer page x as a response to the data request by
the specific operation. Further, the buffer management mod-
ule may create a new page-action for the specific operation,
and add the new page-action to the head of the page-action
list. In some embodiments, adding of a new page-action to the
page-action list may trigger the calculation of the IOD for the
specific buffer page referenced by the new page-action.

In some embodiments, if the requested data page X is not in
the buffer, the buffer management module may evaluate
whether the buffer is full, meaning that all the buffer pages are
used for buffering data. If the evaluation at block 330 returns
“No”, indicating the buffer is not full, the buffer management
module may allocate a new buffer page from the buffer for the

US 9,235,508 B2

13

buffering of the page x. In the meantime, process 301 may
proceed to block 320, in which the buffer management mod-
ule may continue monitoring the plurality of operations. In
this case, the buffer management module may create a new
page-action for the specific operation, and add the new page-
action to the head of the page-action list. Afterward, the
computer system may finish processing the specific operation
using the allocated new buffer page.

In some embodiments, if the evaluation at block 330
returns “Yes”, meaning the buffer is full, then process 301
may proceed to block 340, and tries to identify one or more
victim pages from the buffer for eviction. At block 340, for
each buffer page in the plurality of buffer pages, the buffer
management module may determine the page state for the
buffer page. The page state may be retrieved from a frame that
is selected from a frame list and is associated with the buffer
page. For example, the frame may indicate a write buffer
action has been applied to the buffer page. In this case, the
state of the buffer page may be “dirty.”” When there is no write
buffer action on the buffer page, the state of the buffer page
may be “clean.” Further, the buffer page’s state may also be
derived from the page-actions that are selected from the page-
action list and are referencing the buffer page.

At block 350, the buffer management module may deter-
mine a page hotness prediction for the buffer page. The page
hotness prediction may be calculated using the formula 1
shown above, based on the IOD and OR values derived from
the page-action list. Specifically, the buffer management
module may determine the IOD for the buffer page based on
a number of operation occurrences after a specific buffer
action on the first buffer page, and determine the OR for the
buffer page based on a previous occurrence of the specific
buffer action on the specific buffer page. The specific buffer
action may be a read buffer action or a write buffer action.

At block 360, the buffer management module may calcu-
late a page weight for the buffer page associated with the
page-action, based on the page state determined at block 340,
and the page hotness prediction determined at block 350. In
some embodiments, the page weight may be calculated using
the formula 2 shown above. Specifically, the buffer manage-
ment module may first determine whether the page state is
clean or dirty, and then use the respective portion of the
formula in the above formula 2. The buffer management
module may then calculate a page-read hotness prediction
and/or a page-write hotness prediction, and calculate the page
weight using the page-read hotness prediction and the page-
write hotness prediction, with their corresponding buffering
time saves.

At block 370, once each buffer page in the buffer has a
calculated weight values, the buffer management module
may identify a specific buffer page from the plurality of buffer
pages for having a low page weight. In some embodiments,
the buffer management module may choose the buffer page
that has the lowest page weight. Alternatively, any buffer page
that has a page weight that below a predetermined threshold
weight value may be deemed a victim page for eviction.

At block 380, the buffer management module may evict
from the buffer the one or more buffer pages identified at
block 370, thereby creating empty space for buffering the new
page x that is required by the specific operation to be executed
on the computer system. Further, the buffer management
module may make update to the page-action list by removing
all page-actions that are associated with the evicted buffer
pages, and create new page-action for the newly buffered
page.

FIG. 4 shows a flow diagram of an illustrative embodiment
of'a process for implementing an enhanced flash-based buffer

10

15

20

25

30

35

40

45

50

55

60

65

14

management strategy. The process 401 may include one or
more operations, functions, or actions as illustrated by blocks
410, 420, 430, 440, 450, 451, 453, 460, and/or 470, which
may be performed by hardware, software and/or firmware.

At block 410, a buffer management module may maintain
a page-action list for monitoring a plurality of operations
which may utilize a buffer when accessing a flash-based
storage system. The buffer may contain a plurality of buffer
pages for buffering/caching the pages of data retrieved from/
saved to the flash-based storage system. In some embodi-
ments, the page-action list may contain a hot-access queue
and a cold-access queue. Further, a frame list, which contains
a plurality of frames each of which is associated with a cor-
responding buffer page in the buffer. Each frame may have a
read weight state (“RH”) and a write weight state (“WDH”)
for identifying whether the associated buffer page has
recently been accessed.

In some embodiments, the hot-access queue and the cold-
access queue may provide a higher priority to a buffer page
that is associated with a write action than a buffer page that is
associated with a read action but not write action. The buffer
page that is associated with a write action may have a “high”
WDH state when the buffer page is referenced in the hot-
access queue and/or the cold-access queue. The buffer page
that is associated with a read action but not a write action may
have a “high” RH state only when the buffer page is refer-
enced in the hot-access queue while the buffer page is being
read. Since a buffer page having “low” RH and WDH states
may be evicted, by maintaining a “high” WDH state longer,
the “dirty” buffer pages in the buffer may be kept longer.

At block 420, a computer system may process a specific
operation, which may be selected from a plurality of opera-
tions. The operation may access a first buffer page selected
from the plurality of buffer pages. In some embodiments, the
buffer management module may evaluate the specific opera-
tion’s buffer action, and create a new page-action (“first page-
action”) that references the first buffer page and records the
specific operation’s buffer action. The new page-action may
be stored to the head of the hot-access queue in the page-
action list. In some embodiments, the buffer management
module may first check the hot-access queue and the cold-
access queue, and remove any identical page-action (e.g., one
that referencing the same buffer page and having the same
buffer action) from the page-action list before adding the
newly created page-action to the head of the hot-access
queue. Further, the buffer management module may locate
the frame (“first frame”) from the frame list which is associ-
ated with the first buffer.

At block 430, if the hot-access queue is full, the buffer
management module may select one or more page-actions
from the tail of the hot-access queue, move them out of the
hot-access queue, and into the head of the cold-access queue.
Assuming a page-action (“second page-action”) is selected
from the tail of the hot-access queue and moved it to the head
of'the cold-access queue, the butfer management module may
locate the frame (“second frame”) from the frame list which
is associated with a second buffer page that is referenced by
the second page-action. The second frame’s read weight state
(“first read weight state”), which is associated with the second
buffer page, is set to a “low” value, regardless of whether the
first read weight state had a “high” or a “low” value. Further,
the second frame’s write weight state is not updated.

At block 440, if the cold-access queue is full, the buffer
management module may select one or more page-actions
from the tail of the cold-access queue, and remove these
page-actions from the page-action list. Assuming a page-
action (“third page-action™) is selected from the tail of the

US 9,235,508 B2

15

cold-access queue, the buffer management module may
locate the frame (“third frame”) from the frame list which is
associated with a third buffer page that is referenced by the
third page-action. The third frame’s write weight state (“first
write weight state”), which is associated with the third buffer
page, is set to a “low” value, regardless of whether the first
write weight state had a “high” or “low” value. Afterward, the
third frame should have a “low” read weight state and a “low”
write weight state.

Atblock 450, a determination is made to check whether the
operation’s buffer action is a “read buffer action” or a “write
buffer action.” If it is a write buffer action, process 401 may
proceed to block 451. If it is a read buffer action, then process
401 may proceed to block 453. At block 451, the buffer
management module may set the first frame’s write weight
state (“second write weight state”) to a “high” value. At block
453, the buffer management module may examine to see
whether any page-action identical to the first page-action has
been found in the hot-access queue. If the first buffer page is
previously referenced in the hot-access queue, then the buffer
management module may set the first frame’s read weight
state (“second read weight state”), which is associated with
the first buffer page, to a “high” value. Otherwise, the first
frame’s second read weight state is not set to “high” value. In
some embodiments, once the first buffer page is referenced in
the page-action list, the first frame may be removed from an
eviction candidate page index.

At block 460, the buffer management module may select a
victim buffer page that is removed from the cold-access queue
for eviction. The buffer management module may select a
specific frame from the eviction candidate page index, and
identify the victim buffer page that is associated with the
specific frame. The specific frame associated with the victim
buffer page may have its read weight state and write weight
set to “low” values. At block 470, the victim buffer page may
be evicted from the buffer.

FIG. 5 is a block diagram of an illustrative embodiment of
a computer program product 500 for implementing a method
for managing a buffer for a computer system. Computer pro-
gram product 500 may include a signal bearing medium 502.
Signal bearing medium 502 may include one or more sets of
executable instructions 504 that, when executed by, for
example, a processor, may provide the functionality
described above. Thus, for example, referring to FIG. 1, the
computer system 110, may undertake one or more of the
operations shown in at least FIG. 3 and FIG. 4 in response to
the instructions 504.

In some implementations, signal bearing medium 502 may
encompass a non-transitory computer readable medium 506,
such as, but not limited to, a hard disk drive, a Compact Disc
(CD), a Digital Versatile Disk (DVD), a digital tape, memory,
etc. In some implementations, signal bearing medium 502
may encompass a recordable medium 508, such as, but not
limited to, memory, read/write (R/W) CDs, R/'W DVDs, etc.
In some implementations, signal bearing medium 502 may
encompass a communications medium 510, such as, but not
limited to, a digital and/or an analog communication medium
(e.g., a fiber optic cable, a waveguide, a wired communica-
tions link, a wireless communication link, etc.). Thus, for
example, referring to FIG. 1, computer program product 500
may be wirelessly conveyed to the computer system 110 by
signal bearing medium 502, where signal bearing medium
502 is conveyed by communications medium 510 (e.g., a
wireless communications medium conforming with the IEEE
802.11 standard). Computer program product 500 may be
recorded on non-transitory computer readable medium 506 or
another similar recordable medium 508.

20

40

45

55

16

FIG. 6 shows a block diagram of an illustrative embodi-
ment of an example computing device 600. In a very basic
configuration 601, the computing device 600 may include one
ormore processors 610 and a system memory 620. A memory
bus 630 may be used for communicating between the proces-
sor 610 and the system memory 620.

Depending on the desired configuration, processor 610
may be of any type including but not limited to a micropro-
cessor (UP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 610 can
include one or more levels of caching, such as a level one
cache 611 and a level two cache 612, a processor core 613,
and registers 614. The processor core 613 can include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina-
tion thereof. A memory controller 615 can also be used with
the processor 610, or in some implementations the memory
controller 615 can be an internal part of the processor 610.

Depending on the desired configuration, the system
memory 620 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof. The
system memory 620 may include an operating system 621,
one or more applications 622, and program data 624. The
application 622 may include a buffer management module
623 that is arranged to perform the functions and/or opera-
tions as described herein including at least the functional
blocks and/or operations described with respect to the process
301 of FIG. 3. The program data 624 may include page-action
list 625 to be accessed by the buffer management module 623.
In some example embodiments, the application 622 may be
arranged to operate with the program data 624 on the operat-
ing system 621 such that implementations of the remote infor-
mation retrieval may be provided as described herein. This
described basic configuration is illustrated in FIG. 6 by those
components within dashed line 601.

There is little distinction left between hardware and soft-
ware implementations of aspects of systems; the use of hard-
ware or software is generally (but not always, in that in certain
contexts the choice between hardware and software can
become significant) a design choice representing cost vs.
efficiency tradeoffs. There are various vehicles by which pro-
cesses and/or systems and/or other technologies described
herein can be effected (e.g., hardware, software, and/or firm-
ware), and that the preferred vehicle will vary with the context
in which the processes and/or systems and/or other technolo-
gies are deployed. For example, if an implementer determines
that speed and accuracy are paramount, the implementer may
opt for a mainly hardware and/or firmware vehicle; if flex-
ibility is paramount, the implementer may opt for a mainly
software implementation; or, yet again alternatively, the
implementer may opt for some combination of hardware,
software, and/or firmware.

The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of
block diagrams, flowcharts, and/or examples. Insofar as such
block diagrams, flowcharts, and/or examples contain one or
more functions and/or operations, it will be understood by
those within the art that each function and/or operation within
such block diagrams, flowcharts, or examples can be imple-
mented, individually and/or collectively, by a wide range of
hardware, software, firmware, or virtually any combination
thereof. In some embodiments, several portions of the subject
matter described herein may be implemented via Application
Specific Integrated Circuits (ASICs), Field Programmable
Gate Arrays (FPGAs), digital signal processors (DSPs), or
other integrated formats. However, those skilled in the art will

US 9,235,508 B2

17

recognize that some aspects of the embodiments disclosed
herein, in whole or in part, can be equivalently implemented
in integrated circuits, as one or more computer programs
running on one or more computers (e.g., as one or more
programs running on one or more computer systems), as one
Or more programs running on one or more processors (e.g., as
one Or more programs running on one or more microproces-
sors), as firmware, or as virtually any combination thereof,
and that designing the circuitry and/or writing the code for the
software and/or firmware would be well within the skill of
one of skill in the art in light of this disclosure. In addition,
those skilled in the art will appreciate that the mechanisms of
the subject matter described herein are capable of being dis-
tributed as a program product in a variety of forms, and thatan
illustrative embodiment of the subject matter described
herein applies regardless of the particular type of signal bear-
ing medium used to actually carry out the distribution.
Examples of a signal bearing medium include, but are not
limited to, the following: a recordable type medium such as a
floppy disk, a hard disk drive, a Compact Disc (CD), a Digital
Versatile Disk (DVD), a digital tape, a computer memory,
etc.; and a transmission type medium such as a digital and/or
an analog communication medium (e.g., a fiber optic cable, a
waveguide, a wired communications link, a wireless commu-
nication link, etc.).

Those skilled in the art will recognize that it is common
within the art to describe devices and/or processes in the
fashion set forth herein, and thereafter use engineering prac-
tices to integrate such described devices and/or processes into
data processing systems. That is, at least a portion of the
devices and/or processes described herein can be integrated
into a data processing system via a reasonable amount of
experimentation. Those having skill in the art will recognize
that a typical data processing system generally includes one
or more of a system unit housing, a video display device, a
memory such as volatile and non-volatile memory, proces-
sors such as microprocessors and digital signal processors,
computational entities such as operating systems, drivers,
graphical user interfaces, and applications programs, one or
more interaction devices, such as a touch pad or screen,
and/or control systems including feedback loops and control
motors (e.g., feedback for sensing position and/or velocity;
control motors for moving and/or adjusting components and/
or quantities). A typical data processing system may be
implemented utilizing any suitable commercially available
components, such as those typically found in data computing/
communication and/or network computing/communication
systems.

The herein described subject matter sometimes illustrates
different components contained within, or connected with,
different other components. It is to be understood that such
depicted architectures are merely exemplary, and that in fact
many other architectures can be implemented which achieve
the same functionality. In a conceptual sense, any arrange-
ment of components to achieve the same functionality is
effectively “associated” such that the desired functionality is
achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as “associated
with” each other such that the desired functionality is
achieved, irrespective of architectures or intermedial compo-
nents. Likewise, any two components so associated can also
be viewed as being “operably connected”, or “operably
coupled”, to each other to achieve the desired functionality,
and any two components capable of being so associated can
also be viewed as being “operably couplable”, to each otherto
achieve the desired functionality. Specific examples of oper-
ably couplable include but are not limited to physically mate-

10

15

20

25

30

35

40

45

50

55

60

65

18

able and/or physically interacting components and/or wire-
lessly interactable and/or wirelessly interacting components
and/or logically interacting and/or logically interactable com-
ponents.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

Itwill be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to”, etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may containusage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to inventions containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should typically be interpreted to mean “at least one” or “one
or more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, typically means at least two recita-
tions, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and C, etc.” is used, in general such a construction is
intended in the sense one having skill in the art would under-
stand the convention (e.g., “a system having at least one of A,
B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to “at least
one of A, B, or C, etc.” is used, in general such a construction
is intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of'A, B, or C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be under-
stood to include the possibilities of “A” or “B” or “A and B.”

From the foregoing, it will be appreciated that various
embodiments of the present disclosure have been described
herein for purposes of illustration, and that various modifica-
tions may be made without departing from the scope and
spirit of the present disclosure. Accordingly, the various

US 9,235,508 B2

19

embodiments disclosed herein are not intended to be limiting,
with the true scope and spirit being indicated by the following
claims.
We claim:
1. A method to manage a buffer for a computer system,
comprising:
maintaining a page-action list for monitoring a plurality of
operations being executed on the computer system and
utilizing a plurality of buffer pages of the buffer, wherein
the page-action list contains a hot-access queue for
recently accessed buffer pages and a cold-access queue
for less accessed buffer pages;
upon a determination that the buffer is full, identitying a
victim buffer page from the plurality of buffer pages for
eviction, wherein the victim buffer page is selected from
the cold-access queue and based on a page weight,
which is calculated based on a page state of the specific
buffer page and a page hotness prediction for the specific
buffer page might be accessed by an incoming opera-
tion; and
evicting the victim buffer page from the buffer.
2. The method as recited in claim 1, further comprising
during executing of a first operation which is selected from
the plurality of operations and is accessing a first buffer
page selected from the plurality of buffer pages, adding
a first page-action referencing the first buffer page and
storing the first operation’s buffer action to the hot-
access queue.
3. The method as recited in claim 2, further comprising
upon determining that the first operation’s buffer action is
a write buffer action, setting a write weight state associ-
ated with the first buffer page to a high value.
4. The method as recited in claim 2, further comprising
upon determining that the first operation’s buffer action is
aread buffer action and the first buffer page is referenced
in the hot-access queue, setting a read weight state asso-
ciated with the first buffer page to a high value.
5. The method as recited in claim 1, further comprising:
moving a second page-action, referencing a second buffer
page selected from the plurality of buffer pages, from the
hot-access queue to the cold-access queue; and
setting a read weight state associated with the second
buffer page to a low value.
6. The method as recited in claim 5, further comprising:
removing a third page-action, referencing a third buffer
page selected from the plurality of buffer pages, from the
cold-access queue; and
setting a write weight state associated with the third buffer
page to a low value.
7. The method as recited in claim 1, wherein the victim
buffer page is associated with a low read weight state and a
low write weight state.
8. A system configured to manage a buffer for a computer
system, comprising:
a page-action list containing a hot-access queue for
recently accessed buffer pages and a cold-access queue
for less accessed buffer pages; and
a buffer management module coupled with the page-action
list, wherein the buffer management module is config-
ured to
monitor a plurality of operations being executed on the
computer system and utilizing a plurality of buffer
pages of the buffer,

upon a determination that the buffer is full, identify a
victim buffer page from the plurality of buffer pages
for eviction, wherein the victim buffer page is selected
from the cold-access queue and based on a page

10

15

20

25

30

35

40

45

50

55

60

65

20

weight, which is calculated based on a page state of
the specific buffer page and a page hotness prediction
for the specific buffer page might be accessed by an
incoming operation; and

evict the victim buffer page from the buffer.

9. The system as recited in claim 8, wherein the buffer
management module is further configured to

during executing of a first operation which is selected from

the plurality of operations and is accessing a first buffer
page selected from the plurality of buffer pages, add a
first page-action referencing the first buffer page and
storing the first operation’s buffer action to the hot-
access queue.

10. The system as recited in claim 9, wherein the buffer
management module is further configured to

upon determining that the first operation’s buffer action is

a write buffer action, set a write weight state associated
with the first buffer page to a high value.

11. The system as recited in claim 9, wherein the buffer
management module is further configured to

upon determining that the first operation’s buffer action is

aread buffer action and the first buffer page is referenced
in the hot-access queue, set a read weight state associ-
ated with the first buffer page to a high value.

12. The system as recited in claim 8, wherein the buffer
management module is further configured to:

move a second page-action, referencing a second buffer

page selected from the plurality of buffer pages, from the
hot-access queue to the cold-access queue; and

set a read weight state associated with the second buffer

page to a low value.

13. The system as recited in claim 12, wherein the buffer
management module is further configured to:

remove a third page-action, referencing a third buffer page

selected from the plurality of buffer pages, from the
cold-access queue; and

set a write weight state associated with the third buffer page

to a low value.

14. The system as recited in claim 8, wherein the victim
buffer page is associated with a low read weight state and a
low write weight state.

15. A non-transitory machine-readable medium having a
set of instructions which,

in response to execution by a processor, cause the proces-

sor to perform a method to manage a buftfer for a com-

puter system, the method comprising:

maintaining a page-action list for monitoring a plurality
of operations being executed on the computer system
and utilizing a plurality of buffer pages of the buffer,
wherein the page-action list contains a hot-access
queue for recently accessed buffer pages and a cold-
access queue for less accessed buffer pages;

upon a determination that the buffer is full, identifying a
victim buffer page from the plurality of buffer pages
for eviction, wherein the victim buffer page is selected
from the cold-access queue and based on a page
weight, which is calculated based on a page state of
the specific buffer page and a page hotness prediction
for the specific buffer page might be accessed by an
incoming operation; and

evicting the victim buffer page from the buffer.

16. The non-transitory machine-readable medium as
recited in claim 15, wherein the method further comprises

during executing of a first operation which is selected from

the plurality of operations and is accessing a first buffer
page selected from the plurality of buffer pages, adding

US 9,235,508 B2

21

a first page-action referencing the first buffer page and
storing the first operation’s buffer action to the hot-
access queue.
17. The non-transitory machine-readable medium as
recited in claim 16, wherein the method further comprises:
upon determining that the first operation’s buffer action is
a write buffer action, setting a write weight state associ-
ated with the first buffer page to a high value; or
upon determining that the first operation’s buffer action is
aread buffer action and the first buffer page is referenced
in the hot-access queue, setting a read weight state asso-
ciated with the first buffer page to a high value.
18. The non-transitory machine-readable medium as
recited in claim 15, wherein the method further comprises:
moving a second page-action, referencing a second buffer
page selected from the plurality of buffer pages, from the
hot-access queue to the cold-access queue; and
setting a read weight state associated with the second
buffer page to a low value.
19. The non-transitory machine-readable medium as
recited in claim 18, wherein the method further comprises:
removing a third page-action, referencing a third buffer
page selected from the plurality of buffer pages, from the
cold-access queue; and
setting a write weight state associated with the third buffer
page to a low value.
20. The non-transitory machine-readable medium as
recited in claim 15, wherein the victim buffer page is associ-
ated with a low read weight state and a low write weight state.

#* #* #* #* #*

10

20

25

30

22

